
A look at the Elephants Trunk

PostgreSQL 18
PGConf.NYC 2025

New York, USA

Magnus Hagander
magnus@hagander.net

Magnus Hagander
Redpill Linpro

Principal database consultant
PostgreSQL

Core Team member
Committer
PostgreSQL Europe

PostgreSQL 18

Development schedule
July 2024 - branch 17
July 2024 - CF1
September 2024 - CF2
November 2024 - CF3
January 2025 - CF4
March 2025 - CF5
September 2025 - Release!

Current status
3046 commits
3987 files changed, 412360 insertions(+), 211178 deletions(-)

New features
DBA and administration
SQL and developer
Backup and replication
Performance

Breaking changes

Building

Building
Remove support for HPPA

Building
Remove support for HPPA
Remove support for lack of spinlocks

Building
Remove support for HPPA
Remove support for lack of spinlocks
Remove support for lack of atomics

OpenSSL
Remove support for OpenSSL older than 1.1.1

New features
DBA and administration
SQL and developer
Backup and replication
Performance

Checksums
Enabled by default

Finally!
By initdb

--no-data-checksums to disable
NOT on upgrades

Upgrades & stats
Stats are transferred on pg_upgrade

pg_stats, not pg_stat
Ready to use much faster after upgrade!
Actually in pg_dump

Authentication

Authentication
md5 deprecated

Can set md5_password_warnings=off
But don't!

Authentication
OAUTHBEARER
Log in using OAUTH bearer token
Requires server side provider

Written in C
No default provided

Authentication
SCRAM pass-through
In postgres_fdw and dblink
No need for clear-text password
use_scram_passthrough=true on SERVER
Must have same salt and iteration count!

TLS
Support for TLSv1.3 cipher suites
Support for multiple ECDH curves

Crypto
pg_crypto can disable built-in crypto

(auto)vacuum

autovacuum_max_threshold
Upper bound on calculated threshold
For large tables

rows * vacuum_scale_factor too large
Default: 100M

autovacuum_max_workers
Change without restart
Up to autovacuum_worker_slots

VACUUM [ONLY]
For both VACUUM and ANALYZE
Specify ONLY to not recurse into partitions
ANALYZE particularly useful for partitioned tables

EXPLAIN ANALYZE
BUFFERS enabled by default
Show parallel bitmap scan stats
Show memory/disk use for Materialize nodes

COPY
log_verbosity = 'silent'

postgres=# COPY a FROM '/tmp/test.csv' WITH (FORMAT csv, ON_ERROR ignore);
NOTICE: 2 rows were skipped due to data type incompatibility
COPY 4
postgres=# COPY a FROM '/tmp/test.csv' WITH (FORMAT csv,
 ON_ERROR ignore, LOG_VERBOSITY silent);
COPY 4

Statistics

Parallel worker
New fields

parallel_workers_to_launch
parallel_workers_launched

Per db or statement
pg_stat_database
pg_stat_statements

VACUUM
Per table time spent

total_vacuum_time
total_autovacuum_time
total_analyze_time
total_autoanalyze_time

VACUUM
Time spent delaying

pg_stat_progress_vacuum
pg_stat_progress_analyze

WAL
Now tracked in pg_stat_io

Much more granular
Per backend-type

Removed from pg_stat_wal

WAL
wal_buffers_full

Added to pg_stat_statements
In VACUUM/ANALYZE VERBOSE
In EXPLAIN (WAL)

Still globally in pg_stat_wal

New features
DBA and administration
SQL and developer
Backup and replication
Performance

UUIDv7
New generation function
Sortable

Standard says milliseconds
PostgreSQL does 12-bit sub-millisecond

Better for indexes
postgres=# select uuidv7();
 019560db-323b-7515-bb59-abd0d261440c
postgres=# select uuidv7();
 019560db-351c-7691-915f-d0460f0ddc7a
postgres=# select uuidv7();
 019560db-3d94-7b4b-9df8-1caa616fea5a

OLD/NEW for RETURNING
Ability to access both old and new value

In UPDATE
And MERGE

postgres=# UPDATE t SET a=2 RETURNING OLD.a, NEW.a;
 1 | 2

postgres=# UPDATE t SET a=a+1 RETURNING OLD.a, NEW.a;
 2 | 3

OLD/NEW for RETURNING
But also for ON CONFLICT
Determine INSERT or UPDATE

postgres=# INSERT INTO t(a,b) VALUES (1,1)
 ON CONFLICT (a) DO UPDATE SET b=t.b+1
 RETURNING OLD.a, NEW.a, OLD.b, NEW.b;
 | 1 | | 1
...
 1 | 1 | 1 | 2
...
 1 | 1 | 2 | 3

Virtual generated columns
Like STORED virtual columns
Except not.. stored.
Re-calculated on each read
Cannot be indexed
"Partial view"

Virtual generated columns
CREATE TABLE test (
 a int,
 b int,
 c int GENERATED ALWAYS AS (a+b),
 d int GENERATED ALWAYS AS (a+b) STORED
)

Temporal keys
PRIMARY and FOREIGN

CREATE TABLE temptest (
 id int,
 valid daterange,
 CONSTRAINT pk_test PRIMARY KEY (id, valid WITHOUT OVERLAPS),
 CONSTRAINT fk_test FOREIGN KEY (id, PERIOD valid)
 REFERENCES test2(id, PERIOD valid)
)

Temporal keys
You probably want btree_gist

array_reverse()
Yup, that simple...

New features
DBA and administration
SQL and developer
Backup and replication
Performance

pg_verifybackup
Can now verify tar format
(previously only plain)

Replicate generated
columns

Logical replication of generated columns
Only stored!

CREATE PUBLICATION test
FOR TABLE test
WITH (publish_generated_columns='stored')

CREATE PUBLICATION test
FOR TABLE test (a, b, d)

pg_stat_subscription_stats
Collects conflict stats
INSERT conflicts
UPDATE conflicts
Origin conflicts
UPDATE missing
DELETE missing

New features
DBA and administration
SQL and developer
Backup and replication
Performance

Many different
Lots of infrastructure
Often not directly exposed

VACUUM
Use streaming I/O
More eagerly vacuum all-visible pages

To make aggressive vacuum cheaper
(... more)

Parallel CREATE INDEX
Now also for GIN
(in addition to btree and brin)

btree index skip-scan
Use multi-column index for non-prefix scans
Not as fast as dedicated index
But fewer indexes!
Typically with few distinct values in early columns

pg_upgrade
Much more parallel

Previously just pg_dump and copy/link
--swap mode

Move data directory, then overwrite catalog
Fast, but no rollback

General queries
Detect redundant GROUP BY based on UNIQUE

Previously only PRIMARY KEY
Proper row estimates for generate_series

Numeric and timestamp
Already did for integer

General queries
Optimized tuplestore for recursive CTE

Much faster for some queries (25+%)
Reduced memory usage on partitionwise join
JSON escaping using SIMD
Right Semi Join
Faster numeric multiplication and division

Self Join Elimination
Remove self-joins

When a table is already joined
And can be proven to be the same output

Often caused by VIEWs or ORMs
postgres=# EXPLAIN SELECT one.a, one.b, two.a, two.b
 FROM t1 one INNER JOIN t1 two ON one.a=two.a;

 QUERY PLAN

 Seq Scan on t1 two (cost=0.00..32.60 rows=2260 width=16)

Asynchronous I/O
Worker or io_uring

Default: worker
Faster prefetching
Foundation for direct-io

But not there yet
Only read (for now)

Many infrastructure
No direct visibility
Just runs faster
(almost every version)

There's always more

There's always more
Lots of smaller fixes
Performance improvements
etc, etc
Can't mention them all!

Please help!
Download and test!

apt packages available
rpm/yum packages available

Thank you!
Magnus Hagander

magnus@hagander.net
bsky: @magnus.hagander.net

https://www.hagander.net/talks/

This material is licensed

