A look at the Elephants Trunk
PostgreSQL 18

PGConf.NYC 2025
New York, USA

Magnus Hagander
magnus@hagander.net

Magnus Hagander

e Redpill Linpro

= Principal database consultant
e PostgreSQL

= Core Team member

= Committer

= PostgreSQL Europe

PostgreSQL 18

Development schedule

e July 2024 - branch 17

e July 2024 - CF1

e September 2024 - CF2

e November 2024 - CF3

e January 2025 - CF4

e March 2025 - CF5

e September 2025 - Release!

Current status

e 3046 commits
e 3987 files changed, 412360 insertions(+), 211178 deletions(-)

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

Breaking changes

Building

Building

e Remove support for HPPA

Building

e Remove support for HPPA
e Remove support for lack of spinlocks

Building

Remove su
Remove su
Remove su

vort for
vort for
vort for

HPPA
ack of spinlocks

ack of atomics

OpenSSL

e Remove support for OpenSSL older than 1.1.1

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

Checksums

e Enabled by default
= Finally!
e By initdb
--no-data-checksums to disable
e NOT on upgrades

Upgrades & stats

e Stats are transferred on pg_upgrade

» pg stats,notpg stat
e Ready to use much faster after upgrade!
e Actuallyin pg_dump

Authentication

Authentication

e md5 deprecated
s Can set md5_password_warnings=off
= Butdon't!

Authentication

e OAUTHBEARER
e Login using OAUTH bearer token
e Requires server side provider

= Writtenin C

= No default provided

Authentication

SCRAM pass-through
In postgres_fdw and dblink
No need for clear-text password

use scram passthrough=true on SERVER
Must have same salt and iteration count!

TLS

e Support for TLSv1.3 cipher suites
e Support for multiple ECDH curves

Crypto

e pg_crypto can disable built-in crypto

(auto)vacuum

autovacuum max threshold

e Upper bound on calculated threshold
e For large tables

» rows *vacuum_scale_factor too large
e Default: 100M

autovacuum max workers

e Change without restart
e Up to autovacuum_worker_slots

VACUUM [ONLY]

e For both VACUUM and ANALYZE

e Specify ONLY to not recurse into partitions
e ANALYZE particularly useful for partitioned tables

EXPLAIN ANALYZE

e BUFFERS enabled by default
e Show parallel bitmap scan stats
e Show memory/disk use for Materialize nodes

COPY

e log verbosity = 'silent’

postgres=# COPY a FROM '/tmp/test.csv' WITH (FORMAT csv, ON_ERROR ignore);
NOTICE: 2 rows were skipped due to data type incompatibility
COPY 4
postgres=# COPY a FROM '/tmp/test.csv' WITH (FORMAT csv,
ON_ERROR ignore, LOG_VERBOSITY silent);
COPY 4

Statistics

Parallel worker

e New

fields

» parallel_workers_to_launch
» parallel_workers_launched

e Perd

b or statement
ng_stat_database

Dg_stat_statements

VACUUM

e Pertable time spent
= total_vacuum_time
= total_autovacuum_time
s total_analyze_time
= total_autoanalyze_time

VACUUM

e Time spent delaying
" pg_stat_progress_vacuum
= pg_stat_progress_analyze

WAL

 Now tracked in pg_stat_io
= Much more granular
» Per backend-type
e Removed from pg_stat_wal

WAL

o wal_buffers_full
= Added to pg_stat_statements
= [n VACUUM/ANALYZE VERBOSE
= [n EXPLAIN (WAL)

o Still globally in pg_stat_wal

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

UUIDv7

 New generation function
e Sortable

s Standard says milliseconds

m PostgreSQL does 12-bit sub-millisecond
e Better forindexes

postgres=# select uuidv7();
019560db-323b-7515-bb59-abd0d261440c
postgres=# select uuidv7();
019560db-351c-7691-915f-de460f0ddc7a
postgres=# select uuidv7();
019560db-3d94-7b4b-9df8-1caa6l6feaba

OLD/NEW for RETURNING

e Ability to access both old and new value
= |[n UPDATE
= And MERGE

postgres=# UPDATE t SET a=2 RETURNING OLD.a, NEW.a,
1] 2

postgres=# UPDATE t SET a=a+1 RETURNING OLD.a, NEW.a,
2 | 3

OLD/NEW for RETURNING

e But also for ON CONFLICT
e Determine INSERT or UPDATE

postgres=# INSERT INTO t(a,b) VALUES (1,1)
ON CONFLICT (a) DO UPDATE SET b=t.b+1
RETURNING OLD.a, NEW.a, OLD.b, NEW.b;
|11 |1

11211112

1111213

Virtual generated columns

e Like STORED virtual columns
e Except not.. stored.

e Re-calculated on each read
e Cannot be indexed

o "Partial view"

Virtual generated columns

CREATE TABLE test (

a int,

b int,

Cc 1nt GENERATED ALWAYS AS (a+tb),

d int GENERATED ALWAYS AS (atb) STORED

)

Temporal keys

e PRIMARY and FOREIGN

CREATE TABLE temptest (
id int,
valid daterange,
CONSTRAINT pk_test PRIMARY KEY (id, valid WITHOUT OVERLAPS),
CONSTRAINT fk_test FOREIGN KEY (id, PERIOD valid)
REFERENCES test2(id, PERIOD valid)

Temporal keys

e You probably want btree_gist

array_reverse()

e Yup, that simple...

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

pg_verifybackup

e Can now verify tar format
e (previously only plain)

Replicate generated
columns

e Logical replication of generated columns
= Only stored!

CREATE PUBLICATION test
FOR TABLE test

WITH (publish_generated_columns='stored')

CREATE PUBLICATION test
FOR TABLE test (a, b, d)

pg_stat_subscription_stats

e Collects conflict stats
e INSERT conflicts

e UPDATE conflicts

e Origin conflicts

e UPDATE missing

e DELETE missing

New features

e DBA and administration
e SQL and developer

e Backup and replication
e Performance

Many different

e Lots of infrastructure
e Often not directly exposed

VACUUM

e Use streaming|/O
e More eagerly vacuum all-visible pages

= To make aggressive vacuum cheaper
e (... more)

Parallel CREATE INDEX

e Now also for GIN
e (in addition to btree and brin)

btree index skip-scan

e Use multi-column index for non-prefix scans

e Not as fast as dedicated index

e But fewer indexes!

e Typically with few distinct values in early columns

pg_upgrade

e Much more parallel
= Previously just pg_dump and copy/link

e --Swap mode
= Move data directory, then overwrite catalog
= Fast, but no rollback

General queries

e Detect redundant GROUP BY based on UNIQUE
= Previously only PRIMARY KEY
e Proper row estimates for generate_series
= Numeric and timestamp
o Already did for integer

General queries

Optimized tuplestore for recursive CTE

= Much faster for some queries (25+%)
Reduced memory usage on partitionwise join
JSON escaping using SIMD
Right Semi Join
Faster numeric multiplication and division

Self Join Elimination

e Remove self-joins

» When a table is already joined

= And can be proven to be the same output
e Often caused by VIEWs or ORMs

postgres=# EXPLAIN SELECT one.a, one.b, two.a, two.b
FROM t1 one INNER JOIN tl1 two ON one.a=two.a;

QUERY PLAN

Seq Scan on tl1 two (cost=0.00..32.60 rows=2260 width=16)

Asynchronous I/O

e Worker orio_uring
= Default: worker

e Faster prefetching

e Foundation for direct-io
= But not there yet

e Only read (for now)

Many infrastructure

e No direct visibility
e Just runs faster
e (almost every version)

There's always more

There's always more

o Lots of smaller fixes

e Performance improvements
o etc, etc

e Can't mention them all!

Please help!

e Download and test!
= apt packages available
= rpm/yum packages available

Thank you!

Magnus Hagander
magnus@hagander.net
bsky: @magnus.hagander.net
https://www.hagander.net/talks/

This material is licensed

